
CDRL 01000 The BOEING Company CDRL 01000
TASK BR24)613-11000

AD-A240 474

Software Technology for Adaptable,
Reliable Systems (STARS)

DTIC
Submitted to: ELECTE-

Electronic Systems Division: SEPI 1 1991D
Air Force Systems Command, USAF:

Hanscom AFB, MA 01731-5000, C

Contract No:
F19628-88-D-0028

CDRL 1000
BR24 Final Report

0July 1, 1990 I --

The Boeing Company
Space and Defense Group

Boeing Aerospace and Electronics

P.O. Box 3999
Seattle, Washington 98124

Apprbved for public release - distribution is unlimited,

BR24 Final Report
99 045 D613-110oo

REPORT DOCUMENTATION-PAGE Form Ap0proved
noic . e to:vfr mrs~t rvswi*=n xmatcn** stm3 o to twop~ I rws pw M*.r juon;rb0 e V , ~t~,s~ 9 e~. aJs amt manann- be oalano". Mo "
o. pw. and teewm; t coleckm of rtmatn. So cn.sw-c eaptcng us b rdan .stmale cc any ota avsf of t coeoo no irnwmatm fctnb , esals f l9 be t Js vi, to Wasgn Hcatzs
Sv, ce-. De1eat1 I, hlormabo Oporwals and Ppot. 12.1I5jihsm Dm Nfway. Sol 1204. A dto. VA 22 43..02 . taw Ofns ce o Maragvevi ' BdgePap w'rk Reduci Pcoec0 (070,-0188,. Washnn.

; AGENCY USE ONLY (LeaveblAnkl 2. REPORT DATE 3 REPORT TYPE AND DATES COVERED

01-JUL-90

t. -. TITLE AND SUBTITLE S. FUNDWG NUMBERS

C: F19628-88-D-0028
BR24 Final Report

*6 At7.40RS)

David H. Jones TA: BR-24

7. PERFORMING ORGZATIONNAME(S) AND ADDRESSIES) & PERFORMINGORGANIZATON

The Boeing Company REPORTNUMBER

Boeing Aerospace and Electronics Division
Systems and Software Engineering D-613- 11000
P.O. Box 3999
Seattle, Washington 98124

B. SPONSORN-" MONTORING AGENCY NAME(S) AND ADDRESS(ES) WB. SPONSORING /MONIiORING

..... -_ AGENCY REPORT NUMBERESD/AVS-

Bldg. 17-04
Room 113
Hanscom Air Force-Base, 01731-5000

I1. SUPPLEMENTARY NOTES

12L D(STRIBUTION!AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release - distribution unlimited. A

13. ABSTRACT (MaxmnLnl 200 wad)

Several people in the STARS program working in the area of user interface technology
have indirectly contributed to the work presented here: Mark Nelson of SAIC and
Kurt Wallnau of Unisys. Bob Rosen of Boeing was the principle contributor to the
implementation scheme used in the prototype. The Boeing Commercial Airplane Group's
Avionics Flight Systems Central Software also contributed the Ada binding to Motif
that was developed by their group.

14. SUBJECT TERMS 1S. NUMBER OF PAGES

Keywords: STARS user interface 44
virtual interface -user interaction tasks 16.PR2^E CODE
X Windows System

17. SECURITY CLASSIICATION 18. SECU RT CLASSIFICATION 1l SECURITY CLASSIFICATION 20. LIMITA'iON OF ABSTRACT
OF REPORT OF THIS PAGE OFABSTRACT

Unclassified Unclassified Unclassified None

NSN-7540-01-280.5500 Standard Form 298 (Rev. 2-89
Pem.1e0 by ANSI Si 23;18
298.102

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24 1)613- 1I(X)

Name of CDRL

Prepared by- DavdHDavid H. Joqs

Chief Prornt/mer (BR24)

Reviewed by C)
James. King.
System Architect

Reviewed by qoh0 " ?'

Joh Neorr
Develo ment Manager

Approved by KA-",
William M. Hodges
STARS Prdgram Manager

Aesesioa ro -

1Z13 Uz 0&

Justiflat io...

Distributin/
Aviglabtilty COIo,

all " and/.or
Di*t spoel

iR24 inal Report
D)61 3-110002

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

ABSTRACT

This document reports the results of the Boeing STARS task BR24, User Meta
Interface, (henceforth called the "STARS User Interface Toolkit" or SUITE). It
includes the status of the prototype work done on BR24 and a comparison code size
based on the prototype sample application. There is a technical discussion of the
implementation of SUITE; recommendations for future work are identified.

KEY WORDS

user interface
virtual interface
user interaction tasks
X Windows System

BR24 l:inal Report
)613-11000 3

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

PIEFACE

.Several people in the STARS program working in the area of user interface technology
have indirectly contributed to the work presented here: Mark Nelson of SAIC and Kurt
Wallnau of Unisys. 13ob Rosen of Boeing was the principle contributor to the
implementation scheme used in the prototype. The Boeing Commercial Airplane
Group's Avionics Flight Systems Central Software (Brian Pflug and Joe Scheer)
contributed the Ada binding to Motif that was developed by their group.

KIEYWORI) STRINGS

user interface
virtual interface
user interaction tasks
X Windows System

B1,24 Final Report
)613-1 1000 4

CDRL-OO00 The BOEING Company CDRL 01000
TASK BR24.

'TABLI- OF CONTIENTS

Section 1-

S(OP -......................... 9

Section 2

REFERFN(I:-1) I)OCUMENTS 9

Section 3

'NO TI ...S ... 9

3.1 Abbreviations and Acrony-ms 9

Section 4

-BR24 RES ULTS .. 10

4.1 Description of the Prototype Sample Application 10
4.2 Status of W ork ... 1 1

4.2.1 Implementation of SUITE Components I 1
4..- Implementation of tie New APFAT -User interface 12
4.2.3>Modifications to APPAT -....... 12
4.2.4 Demonstration of APFAT with the New User Interface 12

43 -Comparison of Code Size 12
4.3.1 Metrics for APFAT, Version-5 12
4;3.2 Metrics-for AP:'1AT with SUITE Interface 15
4.3.3 Metrics for SUITIE 17

4.4 Comparison of Porting l'Ef'fort 17

Section 5

JMIMENTAT'ION 01: SUl'. 17

5.1 Imp lemenation Goals 17
5.2 Analysis of Implementation Options -18
5.3 l)escription of Implementation 2 :1"

5.3.1 The Class Hierarchy 21-

B1R-24 Final Report
)613-11000 5

CDRL 01000 The BOEING Company CDRL-01000
TASK BR24

TABL, O1P (:'ONTI -.NTIS [continued]-

Section 5 IMPLEMENTATION OF SUITE jcontinuedj

5.3.2 Thie Windowing System Interface 24
5.4 Conclusions...................................... 26

Section 6

RlEC()MMUNI)ATIONS FOR FUTURE- WORK....................... 28

6.1 Refine Foley's Concept of "Selection -interaction Task".. 28
6.2- Explore Alternativc Implemnentations-that use L.anguage -Extensions to Ada 28
6.3 D)emonstrate Application lPortvdbility.............................. 29-
6.4 Extend SUITE. to Application-specific Components.................. 29
6.5 Clean-up -SUl'l'l, Implementation................................)0
6.6 Port the SUITlE Implementation to-the STIARZS X/Ada Interface........ .31

Appendix A

SAMPLIE-CODI21-- FOR A suIT-i (CLASS............................. 32

A.] Spec........................ 32
A.2 Private Spec... 33
A.3 Body... 35

A.3.1 A Component Insertion Operation............................ 38-
A.4-'rivate B~ody... 41

BR24 Final Report
D)613-1 1000 6

CDRL 01000 The BOEING -C-bhpty -CDRL-01000
TASK-BR24

LI1ST OF' F1GURE's

L. C:omposition of a SUITE Component (A pplication -Panel) 23

IlI24 IFinaliIReport
1)61 3-11000 7

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

LIST 01:TABIJES

1. (Comparison of Methods -fr Simulating Inheritance.......................20

IBR24 ina~~l Report
D)613-11000)

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

1. SCOPE

This document summarizes and reports on the work carried out under the Boeing
STARS task BR24, User Meta Interface (henceforth called the STARS User Interface
Toolkit (SUITE)). The contents include 13IZ24 results, a technical discussion of the
SUITE- implementation, and recommendations for future work.

2. REFERENCED DOCUMENTS

This section lists all documents referenced in this Final Report.

[B-R891 Berard, E. Creating Reusable Ada Software, EVB Training Course, 1989

1BOO871 Booch, G. Software Components With Ada, Benjamin-Cummings, 1987

I(I)RI.9801 Programmers Guide for STARS User Interface Toolkit (SUITE). Jan 31,
1990. Boeing STARS (I)1R.L # 980, Electronic Systems Division, lanscom AFB.

I(0)RI,9701 Ada Code for Meta Level Interface, July 1, 1990. Boeing STARS CI)iI.
970, ilectronic Systems)ivision, Hanscom AFB.

IC!)RI990j Ada (:ode for Prototype Sample Application, July 1, 1990. Boeing
STARS Ci)RI. # 990, Electronic Systems Division, Hanscom A:B.

11Foley 841 Foley, J.l)., et. al.. "The Human Factors of Computer Graphic.s Itteraction

Tech niques", 11"! Computer Graphics and Applications 4(1 1):13-48, Nov. 1984.

I P1ER871 Perez-Perez, H. Simulating Inheritance with Ada. Ada Letters, Sept. 1987

IWAL90] Wallnau, K. AdalXt Architecture: Design Report, January 1990. SIARS
CI)RI #01000, Electronic Systems Division, Hanscom AFEB.

3. NOTES

This section contains information only and is not contractually binding.

3.1 Abbreviations and Acronyms

A1lFAT Ada Program Flow Analysis Tool

API Application Programmer's Interface
S U ITE STAiRS User Interface Toolkit
X X Window.. System

BR24 Final Report
1613-1 1000 9

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

4. BR24 RESULTS

4.1 Description of the Prototype Sample Application

The sample application selected for prototyping was the Ada Program low Analysis
Tool (AI'FAT), developed by Boeing in the Q phase of the current STARS contract.
APFAT was chosen to demonstrate the SUITE virtual interface because it has a
variety of static analysis features which produce information that can be displayed in a
variety of textual, semi-graphic modes; it can be run in either batch or interactive
mode. and has a moderate degree of complexity.

In preparation for prototyping, AF)I:AT version 5 was analyzed to determine what
modifications would be necessary. In addition, the unreleased document "Software
User's Manual for the Ada Program How Analysis "',xl" was reviewed, which
documents an object-oriented user interface that differs from the interface of APFAT
V5. Analysis of the two interfaces reveals that the interface described in the "Software
User's Manual" is much closer to the style of interface supported by SUITE, in
particular:

* It has an object - action selection model.

* The structure is more adapted to a user-controlled dialog.

" The command structure reflects a richer and more highly interactive functionality
(but a functionality as yet not implemented in APIFAT V5).

As a result of this analysis, we decided to base the user interface on the "Software
User's Manual for the Ada Program Flow Analysis Tool (AIAT)." An initial, brief
sketch of the new user interface was written and is summarized below:

Tie AIFAT user interface will allow the user to identify 1) particular Ada program
objects, 2) information about that object that will be extracted from the symbol table,
and 3) display parameters. APFAT operates on objects stored in its symbol table. The
types of objects that will be analyzed/di.splayed include: Identifier.s, Task, Subprogram.
Package . File. Exception, Interface, and File. The main application panel has
standard file and help menus. plus menus to select the Ada entities., identifier, and
attributes that should be extracted from the symbol table and (di.played. The Ada entity
to be analyzed is selected from a single choice list. The Ada program objects
(identifiers) for which information is to be extracted from the symbol table are selected
from a multi-choice text selection list. A multi choice list of togle items is used to
select the information to be displayed about each .elected identifier. The third
selection list (not implemented) is a multi-choice list allotwing the user to display
information on declared object%. The "apply" buton causes information about the
selected object to be extracted from the .ymbol table and the output to the viewport.

BR24 Final Report
!)613--i l1O1t) I ()

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

4.2 Status of Work

In order to demonstrate the feasibility of the concept embodied by SUITE, a prototype
sample application was done. To support this prototype, portions of SUITE were
also implemented. Only those portions of SUITE that were expected to be directly
used by the sample application were actually implemented. As it turned out, this
represented a large percentage of the predefined SUITE components: The only
components not used by APFAT are valuators (SUITE components that permit the
user to view/enter a value within a range of values), several of the dialog panels, text
components, viewport, and command line interface panel.

4.2.1 Implementation of SUITE Components

The implementation of SUITi" is a hierarchy of derived types and a number of
support packages. The base types, from which all other types are derived are
completely implemented, with the exception of resource management. (Resource
management implement.% user preferences in an implementation independent way.)

The following component% are implemented to a full enough extent to support the
prototype sample appliiLation: Command Items, Toggle Items, Menu Command Item.%.
Command lists. Multi-('hoice L.ists. Application Panels, Applications, File Selection
Dialogs.

The following component.% are NOT implemented to a full enough extent to %upport the

prototype sample application:

D I)ialog Panels - Not tested with Frames inserted in them.

" Frames - Cannot insert components in the frame.

" Text Selection - This component was not part of the original specification. It is
needed to support the selection of Ada identifiers for which entrie. exist in
AIFAT's symbol table. See section 6 of the present document for a more
complete discussion of the "Selection Interaction Task".

" Text)isplay - This was also a component that was not part of the original
specification. It- purpo.se is to support the porting of existing applications that
use Text_iO by minimizing the number of code changes necessary t u.e SU''..

The text di.splay component %imulate. portions of the standard package TexLIO.
causinsg output to be displayed in specific SUITE components.

BR24 Final Report
)613-110(1 !i

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

4.2.2 Implementation of the New APFAT User Interface

About 80%) of' tile code necessary to set up the use interface has b~een written and
tested. One suIbmenu has not been generated because its component has not yet- been
implemented.

TIhere are two application processing routines that pass information bt)Cweenl APFAI
andl the user interl'ace. Both routines are partially implemented.

4.2.3 Modifications to APFAT

Modif'ications to existing APPNI' code turned out to be minimal: One AFTATl routine
was modified and ofle was added. TIhe new routine, SymboU-Display processes a
representative set of' information from the symbol table, Ibut not all inf'ormation. All
informnation could be displayed with simple additions to a "case" statement.

4.2.4 Demonstration of APFAT with the New User Interface

A -omplete demonstrati~on of' APFAl' with its new user interface is not possib~le at this
writing. Tlhe applicalion executes and displays menus, submenus. It supports the
selection of' f'iles for parsing and the selection of' thle Ada entity class and thle symb~ol
tab~le inf'ormation to Ibe displayed. The menu for selecting identifiers is not complete;
symbol table information is not currently displayed onl the screen because the text
display componlent is not completed. Instead output is directed to at file. In spite of
these limitations thle demonstration gives a very good feel for hlow APFA'f would be
used through its new user interface.

In addition, demonstration of' the functionality of SUITEl' components is possible
through the substantial test code that was written. Tlhe following test routines may be
used for this purpose: test.a, test-appl icatioil-panel .a, test-com mand...item .a,
test.eommandi ist.a, tesL-core.a, tesL-di alog-panel .a, tes-file-selection .a,
tesL-m en u..com in a nd-i temn. a, tcst-resourced-object., a, test-sel ecti onii.tem. a,
tesL-sel ecti oi- i st. a, test-text-selection.a, test-toggfe-item .a tes-wi dget-.operationsma,
test-x.a

4.3 Comparison of Code Size

Tlhis section compares code size and functionality of' thle prototype sample application,

APi FATl, with the baseline version ol' APFAI', V5.

4.3.1 Metrics For APFA.T, Version 5

C:ompil ation Unit Identifier File Specif'ication

BR24 F~inal Report
D)613-11000 12

CDRL 01000 The BOEING Company CDRL-01000-
TASK BR24

AdaP'arser ada...parser-a
Ada-Parser ada...parser.a
Ada...Scanner ada..scanner-.a
Ada...Scanner ada...scanner.a
Adaptation-D.lata adaptation-.a
AdaptationiData adaptation.a
Apfat apfat.a
Lexical-Analyzer lexical-a
L.exical-Analyzer lexical.a
1Parse...(ompilIatiolLU parse..cuma
ReporL.Generator reporL. a
ReporL-Generator report.a
SymbolDefinitions symtboI..def-.a
SymboL-Mani pulations symbol-manL.a
Symbol-Manipul ations symbol-man. a
SymboLU I symol-ui-.a
SymboL.-U I symbol-ui.a
User-Interf ace, user-interface-.a

User-Interf ace user-interfacema

T[he original APFAT codle (V5) used text-io for all input/output
and had a command line style interface. T1he size of the
source code modules were as follows:

P'ile: //niode-171 13/IocaL-user/r24/A P P-ATI/adlaptation.-.a
17 statements 106 lines

F i le: //nodle.. 711 3/Iocal-user/r24/A PF-A'1'/reporL. a
9 statements 99 lines

P'ile: //niode-1711 3/Iocal-user/r24/A PIFATI/lexical-.a
12 statements 102 lines

F iIe: // node- 1 711 3/l1ocal-user/ r24/A P) FATl/ acla-sc ail1er-.a
14 statements 151 lines

F iIe: //niocle-J7 11 3llocaL-user/r24IA l~ FA'Is/,ymboL-deL-.a
94 statements 256 lines,

I I I: //node 1 711 3'/local-user/r24/A P FATI/syr-nboL-m ani.a
15 statemnents 109 lines,

File: //node-j 71 1 3/local-user/r24/APFl-ATI/symboL-uL-.a
15 statements 134 lines

lBR24 Final Report
D)613-11000 1

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

File: //nodtl 711i3/local-user/r24/A AII 'A'l/acda.parser-.a
2 statements 65 lines

File: //nlocleJ 711 3/local-user/r24/AlP1 'A'1/user-intert'ace-.a
& statements 81 lines

File: //node 1711 3/1 ocal-user/r24/ A 1)1 -'1I'apfat-vdp-.a
I statements 204 lines

File: //node- 1711 3/1local-user/r24/ A 1) 1 'AT1/adaptation. a
29 statements 194 lines

File: //node-I 711 3/l1ocaLuscr/r24/ A 1) 1 A'17/report. a
57 statements 230 lines

File: //nodlej 711 3/locaL-user/r24/A j) I A'A/lexicai .a
186 statements 669 lines

File: // nodejI 71 13/l1oc aLuser/ r24/ A 1) 1FAT/ad a~sciinncr. a
79 statements 439 lines

File: //nodieil711 3/locaL-user/r24/A P FATI/.symbobn an.a
442 statements 1393 lines

File: //noclei 711 3/locaL-user/r24/A PF*-ATr/symbol-ui.a
516 statements; 1175 lines

File: //nocleJ 7 11 3l.caL-user/r241 AP~I 'A/adaparser.a
74 statements 282 lines

File: //node-1711 3/locaL-user/r24/A P FATI/userjnterface.a
110 statements 285 lines

F ie: //niodei 711 3/local-user/r24/ A P F-AT/parse-cu.a
321 statemenits 686 lines

File: //niodeJ 711 3/locil-user/r24/APF[ATI/aip'ata
1(0 statements 90 lines

T1otalIs:
2009 statements 6750 line.,

I xecutable (Apollo l)N3500 (68020, 68881). SIO.1, lDomainAcla 3.0):
333455 bytes

13IZ24 Finial Report
D)613-1 10(00 14

CDRL -01000 The BOEING- Company CDRL 0100
TASK BR24

TIhe user interface portion of' APFATI V5 is actually in several packages, l)ut only thle
following packages were modified in the adaptation for SUITE':

*user-interface.a (file deleted; replaced by suite-ui.a)

*ada parser.a (Text.i() calls eliminated)

4.32 Metrics for APFAT with SUITE Interface

As mentioned above, only two of the original APFATI packages were modified or
removed. The following packages were added to adapt APFA'I to SUI'1B:

* suite-ui - creates the SUITE. user interface for APFAl'

* symbl-dfisplay - parameterized output routines that extract inf~ormation inl the

APFAl' symbol table and format it for output as ASCII text.

" parse.J'ile, select-symbol-inf() - TIhese routines, do application processing as a
result of' user actio~ns such as selection. In general these routines respond to user
input that requires application processing.

Thle user interface portion of' AlPATI interfaces to the original code of' APFATI
through only three routines:

" Ada-j-'arser.Parse-Ada-Source.Files - Takes Ada source file name and parses
syntactically correct Ada, building from it a symbol table.

* Symol)isplay.I)isplay-ldentifier - Produces a formatted ASCII text of'
symbol table information for the specified Ada identifier and Ada entity. T1he
kinds of* symbol table information that can be displayed include : D~eclares,
I nvokedLBy, CallIs, Arguments, Handler, Raises, Ref'erences, Raisec-I n, Body,
Used. visib~le, With__Unit.

" SymoL-l)ispl ay. I)ispl ay-ldenti fiersi;-y.Cl aiss - Produces a list of' identifiers for
the given class of* Ada entities. Tlhis information is used to construct
Tl'xt-Selection components, that dlispl ay Ada identifiers.

T[he followingl table summarizes the metrics associated with all new or modif'ied
* packages (Numbers represent the Ada statement count):

Packagye ilV5 Deleted New

user-interface userjinterf'ace.a I118 118 0
ada..parser ada...parser.a 74 10 5
symbl-display symbol-display.a 0 0 13^7

IlI24 l~iinil Report
D)613-1 1000 15

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

suite-ui suite.ui.a 0 0 151
parse-file parse.Jile.a 0 0 41
selecLtsymbol-info select.symboi-info.a 0 0 37

TOTALS: 192 128 371

lExecutable (Apollo I)N3500 (68020, 68881), SR10.1, l)omainAda 3.0):
1762937 bytes

Notes: Count in number of statements. Counts refer to combined count of statements
in specification and body. New statement count includes both new and modified
statements. The package "symbol-display" represents new functionality that AP'AT
V5 did not have. At the time of this writing the SUITI user -interface to APFAT was
not completed; we expect the final count to be between 250 and 300 statements. As
can be seen by a comparison of the size of' executable image, the use of SUI'E and
other underlying user interface libraries increase the size by a factor of about 5. The
major contributor to the size increase is the size of the underlying user interface
libraries, in this case Motif and X Windows.

The version of APIFAT that uses SUITI is a significantly richer user interface and is
much easier to use. We also consider it very significant that the SUI., version of
APFAT permits modification and adaptation of the user interface via "User
Preferences." APFAT V5 has no similar capabilities. Given these facts, we consider it
impressive that, from the application programmer's point of view, the increase in the
number of statements is only about 250, or about 12% of the total number of
statements in APFAT.

I lowever, the statement count by itself' somewhat underestimates the effort required by
the application programmer to use the SUITIF interface. The Ada statements used to
set-up and run the SUITE interface are somewhat longer and more complicated than
would be required of[only TextlO) were used.

In evaluating the use of SUITE, several other comparisons would have been
interesting, but time did not permit them being made:

a. Compare the number of additionz.I statements that would be required to use
another user interface toolkit such as Xt/Athena, Motif, or Presentation
Manager.

1). Compare the number of language statement required to use a
dialog/presentation language such its Motif/Ull or Serpent/SLANG.

Thcrefore, our preliminary conclusion regarding source code site are that the use of a
high level user interface toolkit such as SUUI''I represents otily a 10-20% increase in

Bi,24 :inal Report
)613-I 1000 16

CDRL 01000 The BOEING Company CDRL-01000
TASK BR24

code size over a user interface that is written using 'exLIO. The significant
advantages of using an higher level toolkit such as SUITE are: User controlled dialog,
visual interface, keyboard/mouse equivalence, consistency across device classes, and.
the ability to customize the user interface through user preferences. (For a fuller
discussion of these concepts, please refer to CDRL 980, "Programmer's Guide for
SUITl' ".

4.3.3 Metrics for SUITE

SuITE' is comprised of about 57 packages totaling to about 14,8(X) lines of code and
3100 Ada statements. In addition, test code represents about 5000 lines of code or
1700 Ada statements.

SUITI- is built on an Ada binding to Mofif, which in turn depends on the "C"
implementations of Motif and Xlib.

4.4 Comparison of Porting Effort

After some evaluation and discussion with developers, it was decide that a comparison
of developer effort in porting applications would not be meaningful. A wide variety of
circumstances effect the amount of effort necessary to port software, and in our
circumstances it was not possible to hold any of these variables constant. Among the
variables effecting porting effort are: Stability of the underlying user interface
software, complexity of' the user interface concepts implemented by the interface, and
experience of the programmer.

To develop (design and implement) the new user interface to APFAT, about 1-2
weeks of effort were required. This time could have been reduced substantially if the
SUITE implementation had been complete and stable before work began. There are
no available figures for the development of the user interface for APFAT, Version 5,
but it was certainly a very short time, since the command line interface style of the
interface is extremely simple.

5. IMPLEMENTATION OF SUITE

5.1 Implementation Goals

The Boeing implementation of SU[I'I was intended as a prototype and only a sample
of the possible set of implementations. Since X windows is the most important user
interface in the marketplace today, it would be logical for an initial implementation to
be on top of X windows.

A key aim of the SUIT" implementation was to use an object-oriented methodology.
This included the ideal, of cncap.sultion (all data and operations on a given object in
a ,ingle place), implementation hiding (unneCe.sSary details hidden from the application

BR24 I:inai Report
)613- 11000 17

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

programmer), and inheritance (operations and attributes of more general classes
(superclasses) of objects being available to more specific subclasses). Furthermore
there was a explicit effort made to use features of the Ada language, rather that
language extensions or an external library providing general purpose capabilities
needed to build coin ponents.

Portability is very important to the concept of SUITE. Major goals were to minimize
dependencies on the windowing system in the application programmer's interface and,
to a lesser extent, on the compilation system in either the application programmer's
interface or its implementation.

Another goal of SUITY" was extensibility, i.e. the ability for others to define new user
interface components for the SUITEI. object set. The fact that geometric objects (boxes,
ovals, etc.) were not included in the current version of SUIT- makes this particularly
important.

5.2 Analysis of Implementation Options

While Ada supports encapsulation and information hiding, it does not provide any
direct support bor inheritance. Nevertheless, since the requirements analysis was done
on object-oriented lines, it was decided to implement as close as possible to them. The
most critical implementation option was thus what metlod to use for approximating
inheritance in Ada.

Six methods for simulating inheritance in Ada were considered. A comparative
analysis of them is shown in table 1. The six methods are:

I. Unisvs'. The method used by Unisys for STARS task UR20, using subtypes
and derived types to simulate inheritance, with two packages for each object.
Refer to IWAI ,90, or to the next section.

2. Unisv.' with derived typing. Similar to (1), but uses derived types and derived
operations at points where Unisys uses subtypes. Refer to the next section.

3. Perez'. A method developed by lEduardo Pere. ere,,, whh also uses derived
types but only one package for each object. Reler to 1. , 8,1' 1.

4. Perez' w/. ttbt'yping and renaming. Similar to (3), 'ut uses subtyping instead of
derived typing and renaming instead of implicitly derived operations.

5. Hide hierarchy. Repeating every operation on a superclass in the specifications
of its subclass':s.

B13.24 Final Report
1)613-I (1(0 18

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

6. Global data structure. All attributes for all-objects included in a single data
structure.

Three criteria are given in the comparison:

1. Inheritability from Object Programmer Viewpe'"nit. Does the person coding a
SUI'If'E object have to undertake any special ac.- t o simulate inheritance?

2. Inheritability from Application Programn,,e" D. -,. - l)oes the application
programmer have to undertake any special a..! , simulate inheritance?

3. Integrity. How easily and how badly can ('ata be corrupted or otherwise
misused in this method?

As shown in the table, all six of the methods make tra,,elfs. Of these methods, it was
decided to go with the Unisys method modified to us,. only derived types (method 2).
This achieved a greater distinction between clas-es and protection against their misuse
compared to method (1), at the cost of' a greater amount of inconvenience f*or tile
application programmer, as discussed in the f'ollowing section. It achieved a closer
simulation of inheritance than the other f'our methods. The most important reason for
eliminrating the subtypes was that Unisys was, implementin, an Itrinsic layer -- a set
of' operations shared by all objects -- while our set of' operations was different for
each object in order to produce a better "'it" between objects and operations. -in

Unisys' case, making everything a subtype produced type equivalence, after which it
would only be necessary to make the Intrinsic package visible to be able to call any
operation. On the other hand, without a shared set of operations the oniy way to make
a superclass operation implicitly available to a subclass was through derived
operations, which are generated by type icivation.

An additional method for implementing inheritance in Ada, Classic-Ada, is discussed
in section 6.2.

Another major implementation question was the choice of' toolkit to use to interface
SUIT'IT to X windows. lere the choice was quite limited because few bindings from
Ada to X windows libraries were available. The STARS Ada implementation of the
Xt Intrinsics by Unisys and SAIC were not available soon enough. A set of Ada
bindings to the OSF/Motif' toolkit was available flor in-house use only from Boeing
Commercial Airplanes. Due to availability considerations the Ada bindings to Motif
were used.

While STARS software is public domain, the contractors were Iree to use proprietary
or in-house software in-their implementatio,.;,, so that the Motif' bindings could be used
even though they would not be available to users of' SUIT.H. Since the SUIl'E
implementation was considered a sample and prototype, It was not critiu,-; "it
maximize its usability by relying only on public domain software.

13 R24 Final Report
)613- 11000 19

CDRL 01000 The BOEING Company CDRL 01000

TASK BR24-

TABLEJ I Comparison of' Methods for Simulating Inheritance

Method [Inheritability Inheritability Integrity
from object from application
programmer programmer
viewpoint viewpoint

UnisYs' Vull -~Full No protection against
Iviolations of' class hie,:rarchy

-- consequences could -be

disastrous

U.-isiys' Oi'I Must explicitly Some chiecked type Allows violJons of' class
derived typing provide operations conversions hiierarchy ii .heckt;al type
instead iof that are not necessary conversions are (lone
stibty ing)- implicitly derived

Perez' Must.explicitly Must explicitly Full
providle operations convert objects to
that are not superclass type(s)
implicitly derived or use link

operation. to link
instances of class &
superclasses

Perez' w/ Must explicitly Mu.. use link Full
subnTying & convert- objects to operation to link
renaming superclass type(s); instances of'class &

must provide -superclasses when~
renaming clauses Updating objects
for all inherited
operations &
4ttributes

Hide hi erarchzy Must provide Full Many subprogrami calls
subprogramn bodies Irequires rpragna INLINE
for all opecrationls " or efficiency

13R24 Final Report
1)613-I 1000 20

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

TABILE I (omparison of Methods for Simulating Inheritance [continuedJ

Method Inheritability Inheritabi!ity Integrity
from object from application
programmer programmer
viewpoint viewpoint

Global data Full Full No protection against
structure violations of class hierarchy

(although data is not
destroyed); must recompile
entire system if any attribute
is added/changed;
meaningless data is visible to
operations (stamp coupling)

5.3 Description of Implementation

5.3.1 The Class Hierarchy

As already mentioned, SUITn'E attempts to simulate inheritance b) a method similar to
the one adopted by Unisys in task UR20. This method involves 'wo sets of packages
for each object.

The first package is the "public" spec; this is the interface intended for use by the
a,-plication programmer. Each class in the public spec is represented by a derived
type, which in Ada allows it to inherit the operations defined for its parent type,
including the operations that the parent itself inherited. (Alas, constants and
exceptions defined for the class are not inherited, nor are operations in which an object
of the parent type is not a parameter, although there were only a few of the latter).

The second package is the "private" spec. This includes information that other SUITI.
classes n.-cd but the application programmer does not. Since other classes (packages)
must use the data, it cannot be hidden in the body of the public package. The primary
information i;, this package is the record used to contain the attribute data for the
class. As shown in figure 1, each class record is divided into two parts, an "inlherited"
part and an "added" part. The inherited part is the superclass' data fields. so that each
class has all of the attributes of its superclasses. The added part contains the
information periiient only for the new class and its subclasses.. 'f"o get an attribute of

*In 1R22. SAIC's class record repeats the attributes of its superclass rather

than encapsulating them as an "inherited part". This permits easier access to
the superclass attributes at the price of redundancy.

1R24 Final Report
D)613-11000 21

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

some distant superclass, one travels through the "inherited" parts up the superclass tree
until the proper "added part" becomes accessible. Unfortunately, the statements that
traverse up the inheritance tree do not indicate which class contains the accessed
attribute, sincc the access appears as:

<object>. InheritedPart. I nheritediPart... I nherited.Part.Added.Pat

The top of the class hierarchy, the class that is the superclass of all other classes, is
called Core. For the Core class only, the data type in the public spec is a pointer to
the data type in the private spec (the (ore data record). Since all other public spec
types are derived from the public CoreType, that means that all of the public types
are also pointers to the Core data. In order to access the data for their own classes,
an unchecked conversion must be performed which converts from a pointer at one
object (the Core record) to a pointer at another object (the class' own data record).

The mapping of class data into memory is strictly controlled. The inherited part is
always placed in memory before the added part. The inherited part may, in turn, have
its own inherited and added parts, which must also obey this rule. This structure
continues up to the innermost class (Core) which as a result is always is placed at the
very top of a class' data structure. If the added part contains components, then those
components will have their own inherited and added parts; care must be taken to avoid
confusing between the core part of an object and the core parts of its component,,.

The purpose of the strict control over the data structure is to ensure that inheritance
will work. An operation on a class takes an object of a "public" data type, which as
already mentioned is either Core or a derivation of it. If the attribute referenced is
part of Core, access to the private type is simple. If it is in some subclass, then
unchecked type conversions must be performed to convert the pointer to the private
Core into a pointer to the private version of whatever class contains the attribute.
Without the strict control, there would be no guarantee that the proper data would be
accessible after the type conversion. Take figure 1 as an example. An Application
Panel is derived from a Resourced Object, which in turn is derived from Core. An
operation on an Application Panel initially receives a pointer to Core and converts it
-- unchecked -- into a pointer to Application Panel: frojm the point of view of a
pointer to a Core object, the attributes of an Application Panel are nonexistent; after
the conversion, the Application Panel fields are made visible. But only through the
strict control i., it assured that the application panel fields are actually represented in
memory by application panel data; otherwise a compiler could rearrange the Core and-
Application Panel fields in memory and create havoc. Without the representation
specifications, the code would be considered erroneous by Ada's standards.

BR24 l:inal Report
)613-11000

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

Core

Inherited _ore __

P rt
esources

System MenL

Button
Rdded
P3rt Action

Bor

Workspoce

Figure 1 Composition of a SUITE Component (Application Panel)

The mapping of inheritance to Ada has some limitations. In particular, there are a
number of operations in which one object of class X is inserted to or retrieved from
another object of class Y. All of these operations are defined in the package
corresponding to Y. Now suppose we have subclasses for X and Y, called X' and Y',
respectively and an operation f(X, Y), which as mentioned above will be placed in Y's
package. Ada's type derivation mechanism will create a derived operation J'(X, Y').
no' f(X', Y') which is what we really need. Placing the operation in X's package will
not help, because then the derivation produces the operation f(X', Y), which is also
wrong. In this case, the application programmer must perform an explicit (checked)
type conversion. For example, consider the classes Item and List and the operation

Add (AnItem: in Item;, Tojlist: in out List);

that is defined in L ist's package. If we have a subclass for Item called Button and a
subclass for list called Ment, then we will need an operation

Add (AnItem: in Button: Tol.ist: in out Menu);

but the derived operation will actually have the parameter profile

Add (AnItern: in Item; To-iist: in out Menu);

To invoke the derived operation, the programmer must convert his button from type

BR24 Iinal Report
)613-1 1000 23

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

Button to type Item, using a single checked type conversion.

All components and some attributes of each object are defined internally as part of the
object. Other attributes, however, are defined as resources. A resource, unlike an
internally-defined attribute, can be set by the user with a file by stating the name of the
object (or its class to affect all objects in t he class), the resource name, and the desired
value. In general, resources affect only the view of an object and not its behavior.
The decision of which attributes should be resources and which should not were a
matter of' balancing user tailorability against the ability of SUITIE to control the
attribute to ensure proper behavior.

The application programmer can modify and query internally-defined attributes with
operations defined in the package of the class containing the attribute. The operations
on resources, on the other hand, are defined by a single class (package),
ResourcedOhject. It provides a common set of operations over all resources using a
set of generics that other SUITE objects instantiate to define what resources they will
provide. Therefore, while the application programmer needs to refer to the
ResourcediObject package to know the set of available operations and their parameter
profiles, he would not actually be using it directly (except for the resources defined for
all classes) but rather tle generic instantiations in the other SUITE objects.

The Acia code for a sample SUITE object is shown in appendix A.

5.3.2 The Windowing System Interface

The sample SUITE implementation is on top of X windows, and specifically the X
toolkit intrinsics (Xt). the OSF/Motif widget set. and the Boeing Commercial
Airplane's Ada binding to Motif.

In several respects, Xt was inimical to our object-oriented design and to
object-orientedness in Ada.

We followed the philosophy advocated by Grady Booch 11300871 and Id Berard
[BI-R891 that objects be ignorant of the context in which they are used; for example,
ani object would have no knowledge of whether it would be placed in a set, tree, table,
etc. and wt)uld not refcrence any of those complex data structures. Xt, however, forc.%
contextual knowledge on its users. This is due to the "parent" parameter required when
creating an Xt object (widget), which specifies what object the new widget is to be
inserted into (it.% "parent"). Furthermore, widget. must be created in a top-down order
in Xt. i.e. a parent vidget must be created before any child widgets can be created.
SUliE ha., no such rc.triction on the order of creation of its object.. Furthermore, the
mapping of sonic SUI'I" objects to Motif widgets was context-dependent, i.e.
depended on what type of object they were placed into. For example, a SUII'n"
.selection list Lould bc implemented as a Motif menu bar (if placed in an action bar), a

BR24 Final Report
)613-I 1000 24

CDRL 01000 The BOEING Company CDRL-0 1000
TASK BR24

pulldown menu (if attached to a single menu choice within an action bar), or a popup
menu (if attached to the background). If this contextual information was hard-coded
into the parents, then extensibility would be reduced. Resolving our methodology with
Xt's in order to successfully create widgets proved to be one of the most difficult, if not
the most difficult, issue during implementation. After considering a number of
methods which failed or were foreseen to fail, we adopted a method in which each
class would have its own widget creation procedure. If the parent widget were already
created, this procedure would be invoked immediately. Otherwise, it would be invoked
later, when the object was inserted into a given parent. [his method involves
procedure variables, another feature not readily available in Ada. Unisys' UR2(0
report discusses a complicated method of providing procedure variables, which time
did not permit us to implement. Therefore, we adopted a temporary restriction that all
objects could only L. inserted in a top-down order, i.e. no object could be inserted into
a second object that was not itself inserted into something else (except for object,; of
the topmost class of tht. parenting hierarchy, Application.) An intermediate-term
solution would be to hard-code the entire widget creation mechanism within the
application, which would allow objects to be inserted in any order but would reduce
extensibility.

Xt allows an application to respond to user action (e.g. selecting a push button by
pressing it) by invoking a given procedure each time the user performs a given action.
These procedures are referred t,) as callbacks. The Xt programmer can specify the
callback procedure corresponding to each object that the user can select. lowever,
this is another case requiring procedure variables. If the callback is parameterless, it
can be passed as a variable by its address. If it has parameters, some additional
means are necessary to provide actual values for those parameters. This is an even
more complicated procedure variable problem than the one needed to create a widget,
since the widget creation procedures would all have the same number and type of
parameters while callback procedure, could have any number of parameter. of any
type. Unisys does present an even more complicated method of simulating procedure
variables for this case, which involves no le.s than pas:;zag around the entire calling
environment. Rather than use up the entire project time io implement it, we adopted a
method using a %et of generic packages with subprogram parameters, which could
accommodate callbacks with up to three parameter.. (If the application programmer
had a callback with more than three parameter.s, he would have to bundle some of
them into a record and unbundle them when his callback was invoked.)

The callback procedures were another ca.,e in which the class hierarchy partially
failed. since procedures in nested generic package.% are not derivable in Ad',. When
setting a callback procedure for a subclas., object. a type conversion again was
nece.ssa . A.nd if one of the parameter.s It) the callback procedure was al.o a generic
p,tramtn.tcr. then even type conver.sion would be in,uffiLient, as shown in the following
example:

type Base is ...

BR24 Final Report
!Do 13- 110 2l{l 5

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

type Derivation is new Base;
B: Base;
):)erivation;

generic
type T is limited private;
with procedure Callback (Using: in T);

package Operations is
procedure l)oIt (To: in T);

Suppose you want to call DoIt on both B and I). You must instantiate
Operations twice, once for each type, even though one is a derivation of the other.
This is caused by the LRM 6.4.1, which states that if a type conversion is used as
the actual parameter for Do_It, then the "type mark" of the conversion must match
the type mark of the ormal parameter, i.e. the conversion must be from
Derivation to T, which would be illegal because T is a generic type.

Some other Xt idiosyncrasies created problems to try to hide their effects from the
application programmer. One was that no commands to display or undisplay
windows would take effect on the screen until "buffer flushing" was done, by calling
either XLPending or XLNext.LEvent. In most cases, the buffer flushing could be
hidden away f'rom the application programmer during displaying or undisplaying
commands, but there still may be some circumstances where the application
programmer would have to do a "flush" himself. (We accomplished the hiding at
the very end of' the project and have not determined if we covered all cases.)

5.4 Conclusions

The application programmer's interface (API) for SUITE appears to have
succeeded in its goal of hiding the underlying windowing system (XVwindows) in its
application programmer's interface (public specs). While some Xt concepts have
been retained in the API (e.g. resources), steps have been taken to allow such
concepts to Ibe ported to other windowing systems. (With resources, a complete
interface has been designed for resource management that hides the Xt resource
manager from the application programmer.)

We have also been successful in maximizing extensibility, at least in concept. It is
possible that shorter-term implementations would have some hard-coding that
would hinder extensibility.

SUITI'. was less successful in minimizing dependencies on the Ada compilation
system. The use of representation specs is not a problem -- they actually enhance
portability, for the reasons giveni in section 5.3.1. The main culprit was the liberal
use of System.Address and the 'Address attribute in implementing procedure
variables. This would produce big headaches in trying to port SUI''E to the VAX

BR2.1 Final Report
)613-0I 0(0 26

CDRL:01000 The BOEING Company CDRL 01000
TASK BR24 •

Ada compiler, which does not support these constructs.

SUI'lE has been partially succ ful in implementing a class hierarchy, using
derived operations. We were una - to include attributes or exceptions in the class
hierarchy, and the previous section described several cases in which the application
programmer would have to perform checked type conversion. I lowever, we do not
know of any method without the use of additional tools (see section 6.2) that would
more closely simulate inheritance in Ada withou: permitting the class hierarchy to
be violated more easily.

BR24 l:inal Report
1)613-1 1000 27

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

6. RECOMMENDATIONS FOR FUTURE WORK

6.1 Refine Foley's Concept of "Selection Interaction Task"

One of the more difficult and reoccurring problems of this task was to arrive at a
satisl'actory abstraction for Foley's concept of selection interaction task [Foley 841,
[('1)RI980]. This concept guided the definition of the following suite components:
Selection item, selection list, command item, command list, toggle item, menu
command item, multi- and single-choice lists, and text selection. This part of the
SUITE class hierarchy was very unstable, possibly reflecting the fact that the
correct abstraction was not being used.

Late in the task we realized that there might be a substantial difference between the
selection of "actions" as opposed to the selection of "objects." Components adapted
to "action" selection include command item, command list, toggle items, and single
and multi-choice lists. Components adapted to "object" selection include text
selection.

Additional analysis of the subject might lead to a redefinition of classes and
operations adapted to each type of selection. A subsequent re-organization of the
SUITE class hierarchy would then be required.

6.2 Explore Alternative Implementations that use Language Extensions to Ada

Classic-Ada, from Software Productivity Solutions (SPS), is an Ada preprocessor
intended to fully implement a class hierarchy according to the precepts of
object-orientedness,, including full inheritance.

The use of Classic-Ada somewhat conflicted with our goal of not using language
extensions. However, later in the task, when implementation difficulties were
apparent, we decided that it was appropriate to re-evaluate the potential benefits
of using language extensions. We received a temporary.evaluation copy of it near
the end of the IZ24 schedule. While time has not permitted a sufficient
re-implementation of* SUITI, to completely compare it to our Ada implementation,
we have done enough to indicate that Classic-Ada might be enormously beneficial.
Its greatest impact in SUITE' was for those classes that heavily used operations to
insert SUI'IU objects into other SUI IE objects, which required a large amount of
unchecked conversions in the standard Ada implementation but only a single line of
Classic-Ada code. One such class, Application Panel, required only one-sixth as
much code in Classic-Ada as conventional Ada.

A critical clucstion in the ability to implement SUITI in (assic-Ada is callback
procedures (procedure variables). SPS claimed that these ,ould be implemented

I1,24i 4inal iReport
)6 13- 11000 28

CDRL 01000, The BOEING Company CDRL 01000
TASK BR24

by making the callback procedure itself an object; we did not get the opportunity -to

put this claim to the test.

The suggested work in this area -would be to:

1. further implement the Classic-Ada version of SUITE enough at least to
produce some graphic output, which at this point mainly requires calls to
create Motif widgets.

2. attempt to implement callback procedures in Classic-Ada.

6.3 Demonstrate Application Portability

We would prefer to demonstrate, rather than to just assert, that SUIT]E enhances
the portal)ility of applications across a-variety of underlying user interface software
and classes of display devices. Currently our assertion of application portability is
based only on the abstract nature of the SUI'I'F user interface concepts and the
corresponding application programmer's interface. A working prototype would
certainly be convinqing everyone involved, including ourselves! A very convincing
demonstration could be made by porting SUITIE to a character-oriented display
device, such as an ANSI terminal. It is our belief that the SUITE interface could
be adapted to such a device without significant violence being done to the original
concept. Such a demonstration would have to be evaluated against the current
goals and objectives of the STARS program, which woukl appear to give less
emphasis to application portability across a very wide range of classes of display
device and user interface technology.

6.4 Extend SUITE to Application-specific Components

In the mission statement for 13R24 [CI)RL 980] it was stated: "SUITE is intended
to support a variety of applications in the domain of systems and software
engineering. The current scope of SUII is limited to user interface (UI)
components that are useful across the entire range of these applications.
Components iiat are application-domain specific are beyond scope, but could be
considered at a later date, as consistent practice evolves in the field and when
additional resources and expertise are available."

There is a need for a wide variety of' user interface components to support

applications development in the software engineering dornain: Graph. components
like arc and nodes with subclasses implementing the semantics of' dillerent types of
graphs; presentation graphics components for re-presenting tabular data, such s
plots, charts, and tables.

13R24 Final Report
1)613-11000 29

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

6.5 Clean-tip SUITE-Implementation

T[he SUITE' implementation would benefit from at review and consolidation of code.
Tlhe following paragraphs refer to detailed modifications to the SU ITE
implementation that would improve robustness, increase consistency, or simplify
usage. The full understanding of this list requires familiarity with tile Ada
implemnentation of SMUIll_

Add In-i labled-State as a parameter to Selection-Itemn.(reate; Alternatively,
specify that all newly created object are by default in the enab~led-state.

Fvaluate whether it would be beneficial to implement menus using SlPC menus.
The operation "set.callback.." in menu-comman(Litem sub~class must be redefined
to take a selection list (specifically) as anl argument. The new body would thenl
build a menu tree from scratch.

Change lDefaulL.Value in package ID) to Nul and adid anl exception lD-s..Nul.

Each private spee should have a Create-Widget (ResourcedLObjecL'Iype)
procedure which will be invoked using a system- independent procedure variable
scheme in the long run and by hard-coding into thle global widget creation
procedure in thle short run.

D~estroy thle old widget each time you add an object to another.

Replace use of' "Object" in operations with more definitive terms.

Add it note that all objects are initially in uncreated state.

E*ach call to set a resource value will have to produce a call to XLRealizeWidoget
due to the behavior of Xt.

Add anl operation in selction list to add anl object to thle end of thle list'?

.Un-comment out thle record representation clauses -- at the last minlute!

Replace calls of Set'Fhe las...3f (and SeLlhie ll)J)1") in C:reate with direct
record references;.

Modify Application-Panel.1)estroy jand(others?) to only dlelete a widget if it is not
N ul lWidiget.

In Men u.(om m andi ter, remove thle conver'ions to Resourced-Object.

I nsure that all classes are one linked word, with ucapital a., thle first letter only.

13R24 Final Report
D)613-I 11(100 3 0

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

Create Interactor and Panel subclasses. The Interactor subclass will have no
children.

Rename package Widget.list to ResourcedLObjectl-,ist.

Have a cleaner way of stopping Xt. See -p. 36 of Xt Intrinsics Manual; should call
XtI)estroy application context and unix exit. This code should probably be put in
Application. l)estroy.

Inserting items into- a list doesn't give the expected order. 'l'his is because the
default insert procedure for composite widgets is- to insert them a the head of the
list. The behavior of the widget should be modified by- replacing the Motif insert
callback with one that inserts according to -position.

Parameters that are .1) or ('lass need only be of type-String, not A_String, since a
String- parameter accepts strings of any length. (The SUITI- bodies can do the
conversion.)

Some classes of objects (e.g. selection lists) can validly either exist independently
(for selection lists,'as a popup menu) or as a component of another object (for
selection lists, as a component of a dialog). In the first case," the object would be a
secondary panel; in the second case, it would not. Whether it is a secondary
panel or not would not be known until the object was inserted into something else,
which means that if Secondary Panel is a class, its class would not be known at
creation time. Therefore, "Secondary Panel" (independent displayability) should
probably really be an attribute rather than a class.

Is-Empty should probably be removed from SelectionList, since Nul and
TheSizeOf handle it.

Routines to get/set resources of different types could be rewritten as generics.
(WidgetLResources, BooleanResources and others).

Increase length of Class and I1) types to 50.

6.6 Port the SUITE Implementation to the STARS X/Ada Interface

Due to availability, SUIT'- was not developed on top of the S'I'ARS X/Ada
interface. This would be a natural and desirable transition when a complete
STARS X/Ada Toolkit (Intrinsics and Widget Set) become available..

BR24 Final Report.
)613- 11000 31

CDRL 01000 The BOEING Company CDRL 01000
TASK -BR24

A. -SAMPLF, (:OI)E FOR A SUI (:1ASS

A.1f Spec

with Component;
With 11);
package- Sample is

type S ampleiIType is new CornponlenL(:ompollnllype;
-- This~particular object is dlefined as a subclass of (ofThpoilent class.

procedure Create
(A-Samnple: out Sample-Type;
-With-i1): ill Il).IDiype : II.lefaulL-Value;
Activated: inl Boolean :True);

--I xceptionsiRaised>
--. uL()L'Memory
--I lxceptionsiRaised>

procedure lDestroy
(TIhe..Samplet in -out Samplei'yPr-);
--. xceptions..Raisecl>
-IObjecLDestroyed
--IExceptions-Raised>

-- Operations onl the sample class' "activity" state
procedure Activate

(T1he.Sample: in-out Sampleifype);
E- xceptions..Raised>

-IObjectlDestroyed
-Fl lxceptions.JRaised>

procedure D~eactivate
(The-Sarnple: ill out SamplerType,);

--ExceptionsiRaisecl>
-jObject.lDestroyed

E-I xceptioiis...laised>

lunction ls....ictivated
('lhe...Sample: Sarnple...Typo) return Boolean;

-IObjctlDestroyed
-'E xcejtiofls...Raised>

BIZ24 Final Report
D)613-1 1000 3

CDRL-01000 The BOEING Company CDRL 01000,
TASK -BR24

-- Operations to -add/change/retrieve a component that is nested
-- inside the sample object.

procedure SeL'l'heJnner-Window-..)l
(TIhe-Sample: in out SamphLeIype;
Tlo: in Component.ComponencL'ype);

-- Any object that is a subclass of' Component can b)e an inner window,
-- according to this definition.

f'unction Ihe-i fner.Wi ndow-Ot
('Ihe-Sa mple: SamplefType) return Component.(omponen~l'ype;

ObjecL-NoL-Created: exception;

OutLOL*Memory: exception;

end- Sample;

Tlhe Sample class defined in- this package is a subcla ss of the Component class.
The type derivation statement will derive all operations in thle (Componenit package
on Componen~l''ypp types, as well as those that are inherited by ComponenTYype
types. (Actually, there are no operations defined in the Component package, but it
does -inherit operations from the Core and ResourcecL()bject packages. Most
SUI' operations come in sets: one or more operations, to change a specific
state/property (constructors) together with an operation to query the current state
value (selector). In this case, there is an "activation' state with two constructors
for it (Activate and Deactivate) together with one Selector (1Is.Activated). There is
a pair of operations to change the sample object's inner window. The "inner
window" property is itself' a SUITE component, the "activation" property is not
another component but rather an attribute. In thle SUITE1 terminology, Existence
is itself a state, which is changed by Create and D~estroy. (n1-this case, there is no
qluery operation.) SUITE objects are all derived from an access type
(Coreil'ype), so all objects are initially in a Destroyed state, that is null. (It may
b~e curious to think of* an object to be destroyed lbefore it has ever been created, b)ut
f'rom the point of' view of* the SUI' programmer, there is really no difference
b~etween a D~estroyed ob~ject and an uninitiAli,.ed one.) P~assing an D~estroyed object
to any operation except Create raises the exception Object-NoL-Created. Note
that a object passed to D~estroy can later be re-Created.

A.2 Private Spec

with Claiss;
with (Comiponient;
with Resourced-ObjecL-Private;
package SarnpleiPrivate is

type Addec-i ii lorm ationl'Iype is record

BR24 F~inal Report
D)61 3- 11000

CDRL 01000 The BOEING Company CDRL, 01000
TASK BR24

Active: Il3oolean;
Its-Inner-Window: C.omponenit.(ornponlenL'Iype;

end-,record;
-- Thle-type of a component -here is-its PUBLIC type.

AdIdedInf'orm atioi)efaul LValIue: constant Added-inform ationi ype.
*(Active => True,

Its-Infler.Window => null-

type Sam pleiRecordil'ype is record
I nherited-Part: Resourced-ObjecLIlrs vate.lResourced-ObjecLecordi ype;
AddediPart: Added-In form ation-lype;

end- record;

T- his rep clause is to enforce the order of the record components.
AddedjnformationLSize: consta nt 48;
for S ampfe-RecordiI'ype use record

Inherited~art at 0 ran-1e
0.. Resourced..Ob)IjecLIrivaite. esourcedObjec-lIype-Size- I;

Adcled-Part at Resourcec()1O)jecLIrivatte. I~esourced-J)jec.Lype-Size
range 0..Added-Information-Size- I;

end record;

IDefaulL-ValIue: constant SarnpleJ-ecord - ype
(I nheritecLPart. => ResourcedJ)jecL-I~ri vate. I)efaul LVaI ue,
AddedLPart => AddecI-iiorinatioi)ef a ultLVal ue);

Samplei-.ecord-Size: constant :=24104;
-Description> .- I

T- fhe number of bits needed for an oIbjcct of type Sample-Record Type.
It is a shame to have to hard-wire the size like this rather than rely on the

-I'Size attrib)ute.
-jHowever, 'Size is not legal in record representation clauses.

D-Ilescription>

Sample..Class: constant (liiss.(lassir*ype

D- Iescription>
T- his is used lby the resource manager to determine the set of resource.,

-Iavailable for a Sample object.
D-ilescription>

procedure CreateiThe-WidgetL'or
(Object: in out Sample-Type);

BR24 Finalf Report
D)613-I 11000 3 4

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

end SamplePrivate;

The "private spec" is where the types for actually storing the class data are defined.
In this case, SampleRecordType holds the data for Sample-lype. The
application programmer never needs to declare anything as a SampleRecordType
-- but other SUIT" classes do. The result is. that this type declaration must be in
a spec -- but it is better to have it in a different spec from the one used by the
application programmer.

Note that the data field in SampleRecordI'ype to hold the hnnerWindow
component is of the public (Access) rather than the private (Record) type. The
reason is that when the body of Sample references the Inner-Window component of
a Sample object, it might wish to invoke an operation on InnerWindow, which
takes the public type as parameter.

As already mentioned, each private spec includes an inherited part and an added
part. The inherited part, which represents the superclass information, is normally
the record associated with its superclass, which in the case of SampleType is
Component. Since Component has no data of its own, the record of Component's
superclass, that is ResourcedObject, is used.

Each private spec should define a default value for its class. This value is not used
by the body of Sample, but it is used by any class that is a subclass of Sample (or
will be later on -- extensibility!) in the same way that Sample uses the default
value of its superclass,

A.3 Body

with (:ass:
with SamplcJPrivate;
with U ncheckecd(:onversion;
with Uncheckedl)eallocation;
with XToolkiLlnitrinsics__OS F
with Xm_Widget._Set;
package body Sample is

subtype Sam ple.Rcord__Typc is
Sam ple-l rivate.Sample-l.ecordIype;

type S ainplel.,ecordAccess-rype is access
S armpleccord.Type:

-- These type conversions allow access to the SampleRecord_Type
-- data fields.
function TelieS a mpleJRecord Access VersionjOf is new

Unchecked(onversion

13R24 :inal Report
)613-I 1000 35

CDRL 01000 The BOEING Company CDRL 01000
TAS.K BR24

(Source => SarnpleJType,
TIarget => Sample..Record-Accessll'ype

function TIhe.S am ple...Version-Of is new U ncliecked&Conversion
(Source => Sarnple.YecordLAccessiType,
T'arget => SampleI'ype

procedure Create
(A...Sample: out Sample-Type;
With-11): in IDADI)l'ype :=I1).1)efaulL.Value;

-Activated: in Boolean :=True) is

Moti 1LS ample-&lass:
constant X.:Ioolki L-I trinisic&)OS I KWidgeLC(I ass,

Xm-WidgeL-Set.Xm-low..('ol urnit.Widige-(:I as,;:

D-Ieclarations used to access the Sample record fields
-- and conlvert it to a SampleiType.

'Ihe--S am ple! -ecordLAccess:
Sam pleJRecorcLAccessJ'ype;

ltsAI1): II).1D1'ype renames WithIl);

b~egi n
Tlhe...SampleJ-.ecordLAccess :=new

,Sample....ecord'Iype'(Sample-i~rivate. I)ef'aul LVaIlue);

-- Set the values for the "ResourcecL'Ihe.Sam pie" part of" Object.
lIlie..Sample....ecorcL-Acces s.I lheritecl-1art. Addce(I-Ia rt

.1ts...WidgeL-Class
Motif Sample-Class;

The-Samn-pie 'FheicSam ple-Version.JOf ('Iiieim pleil~ecorLIAccess.%);
Initializing The...Sample directly would have only initialized enough

-- space for the Core part, because, Sam pleffype is at derivation
-- of a pointcr to Core.

-- Set the values for the "core" part of 'I'lie.Sample.
i'he.Samplc.ItsAI1) :=Its-11);
TIie.Sainple. Its..Class Sam ple.-Priva 1c.Sarin 1)le-C lass;

exception

IlI24 ina~.l Report
D)613-I11000 36

CDRL 01000' The BOEING Company- CDRL-01000-
TASK BR24-

when- Storage-.. -,rror =>
raise OuL-OLMemory;

end Create;

procedure D~estroy
('Fhe-Sample: in out Sample.JIype) is

procedure D7oj)estructioa..Of is new U nchecked-jDeal location
(Object-=> Sample-Rcordil'ype.
Name => Sam p]leiecordLAccessiType);

'I'ie-S ampleJ-ecorL.Access:
Sample...RecordiAccess-Type.

'I'he-Sampleilecord-Acces. Versio....(f ('1heJS ample);

If.The-Sample =.Null then
raise ObjecLNoL-Created;

else
lDoJ)estructionLOf ('FhIeJ a iin p1 e-ecord-.Access%);
TIhe-Sample, null;

end if;
end D~estroy;

-- Operations on the sample, class' "activity" state
procedure Activate

(The-Sample: in out SamplejType) is

'I'lle,..S ampleJl.ecordLAcces.s:
S ample..RecordLAccessType

'I he..Sam ple.Recor...Acces.... Versioa...Ol (1ie-S ample);

begini
If I'le-S ample-= Null then

raise ObjecL-NoL-Created;
else

'I 'lie-Sam ple...Record..A cces.A dded-P a rt. Active True;
end if;

end Activate;

13I24 Final Report
D)613-11000 3 7

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

procedure lDeactivate-iae
(The-Sample: in out Sample-Type) is separte

function ls-Activated-
(The.Sarnpie: SamplelType) return Boolean is separate;

function The-Inner-Wi ndowi) C
(The.S ample: SarnpleJI'ypq)_ return ('omponent.ComponentfType is separate;

procedure SeCIl he- nner..Wi ndow...Of
(The Sample: in out Sample-Type;
To: ii) (:omponcnit.(.orpoilenulIype) is separate;

end Sample;

AllI operations i n S U ITF-packages receive as a parameter anl object of Core-f'ype
or at derivation of'C (oreLype. (:ore-Type -is at pointer to the (Core attributes. In
order to get to ainy oilher attributes, including Sample's own attributes, unchecked
type conversion mu st lbe -performed. In the b~ody of Sample, this is 'one by
invoki ng function 'UIe-S a i-npleJlecord-Access.;VersionX-01. i kewise, it call to this
function must be performed during Create so that enough space is allocated for anl
entire Sample record, not just the Core attributes.*

All visib~le operation,, other than Create should first check to ensure that its object
parameter is non-null.

Ani operation that inserts a S UITE component into another SUITfE component
(e.g. SetiThe-inner-Window.()f) is the most difficult case to implement in-
Motif/Xt. so it is presented and discussed separately from the rest of the body.

A.3.1 A Component Insertion Operation

With Core;
wi th IResourced...Olject;
with Resourced... bjecL-Private;
with WidlgeL.t:
separate (Sample)

procedure Se~l heJ nner-Wi ndowiOf
(The..Sam ple: in out SamplejType;
To: inl ComllPollellt.(Comp1)onenl :*ype) is

subtype I nner..WindwjType is Coiponlent.(ComponlenLt.Iype;

*Because a pointer iC) a Core object inust be returned fromi the operation. die pointer it)

the Sample record ntosi he re- cotierted to a pointer it) Core before exfn Z:*IL operatrion.

BR24 Final Report
D)613-1 1000 3.9

CDRL 01000 The BOEING -Company CDRL 01000
TASK -BR24-

11'he-nner..Window: Inner...AindowfType renames U'o;

.subtype ResourceL-Objec~l'ypc is
Resourced-O)ject.lResouredJ)jecLIlpe;

-- Type conversions to allow-access to Inner-. Vindow record fields.
type IResource(L-OjecU~ecor-Access,,'Iype is

access lResourced...ObjecLI-rivate.lResourceLOIbjecLlecord-'lype;
function 'Ihle.....eouree-OjecLVersioinAOf is new Unchecked.(oflversion

(Source => (:omponent.(:Om ponentflype,
Tlarget => Rlesourced...OjecLlecorAccess-I'ype-

Thle-InnrVindow-l.eC(ord-..Accesq:
Resourced-I~bjecL-lecord..Acces..Jy'pe

:=1hIeje.sourced-LbjecL-VersioitSOt (iiiez.-nner.3Vindoxv);

-- ' Type conversions to allow access to the Core sulbclass components-
-- of The..Sample,

'Ihle,.$arnple...ecord-Acce-ss:
Sam ple..RecorL-Accessiype

TIhe-..Sam pl&.Recor&..Acces...VersionJOf (The-'..Sample);

-- There are two Jnner3%Vindow records referred to in this subroutine.
-- The first is the 'workspace!' component of Iie-Sample, and the second
-- is thle Inner..Window parameter. 'Ibis is the former of the two.

I.Iie..()jects-nerAindo~wv Field: Inner...WindowjYype

Th'lejniner..indowvJicld..ecord..Access:
IRe.sourcedJ0)jecLRecord-AccessC'Iype;

function "=" (x. y: X-:ooxlkiLltrinsic...OSF..'Widget, :) return Boolean
renames X-:r'oIkiLntrinisic-,f)SF-."=";,

he~iii
if The...Sample =Null then

raise OhjecL-NoLCreated:
else

iiie.nner..Window;

'Ili-i~escurced.X1,bjecLVerion-Of

IlI24 Final Report
D)61-I1000 3

CDRL 01000 The BOEING Company CDRL 01000
TASK BR24

('I'hie-..Sam ple....ecord....Access. Addted.JI~art. I ts-I nner..Window);

T-'Ihis part deals with creation of the widget for The-Inner-Window.
if TIhe-S am rpleRecordLAccess. I nheri ted-L1art. Added-P art. I tsjResources

=Xi2loof kiLl ntrinisics)S '. N ul L.Widiget then
-- 1h..Sample's widget hasn't been created yet

-- Save parent-child inf'ormation
if' Tfhe..S ample. lts...Widgc~l'ree

4Uinoi dered..U nbound~e...M an a ~-I 'ree. ,.pty then
-- -- Create a new tree with application panel as its root and

q -- -- the workspace's tree as its sulbtree
-- WidgeL'I'ree.Operatioins,.Ad.Root

-- ~(TIo-.Make => 'Ilhe.Sainplc.Its-.Widigetil'ree,
-- Irom-..temn => TIhe..Sarple,
-- A n-S ubtree => 'heIicl nier-Wi ndow....ecord .WidgeL-:Iree

-- else -- TIhe-Sample's widget tree already exists;
-- -- Add the workspace as, a new child

WidgeL.List. AddLObject

Tlhe-..S ample-Record.Access. I nheri ted-Part. Ackfd- ec art. Its...Chi ldren,
With-Val ue => ResourcecL.()bjec~l'ype(h'IeAnner.Window)

Thie-l ner-Wi ndowi i iel c-l~ecord-Access.Added-.l'art.1Its-i~arenit
ResourceLIObjec~l'ype((:ore.(Core-i ype('I 'heS ample));

-- 'Ihe-Sample is of* Sample type;
-- we need a Resourced-Object type.

-- end if;

else -- The-Sample's widget exists; Go ahead and create the Inner-.Wincfow
widget

-- In the short term, this actually creates the widget
-- In the medium term, this will do nothing and the widget will
-- be created elsewhere.
-- In the long term, this will invoke a subroutine to create the
-- Widget.

'I'le.....I nnr-..Wi ndlow-j ielcL-lecorcL..Access.AcdecfP 'irt. Its....Resources4

(Name => I)''e...tin...eso..O'(h...ne..ico.Is..II)
C:lass =

''le.I -ii ner..Vi ndlow....ecord...Accc~ss. AddecI-l art. Its.WidgeL('l s~s
Parent =

'Vhe.S a in pleiRecord-Access. I nheri tedLPart. AcldedlP art. I ts-Resources

BR24 Final Report
D)6131-I1000 40

_CDRL 01000 The BOEING Company CDRL 01000,
TASK BR24

end if;
end if;

end SeL'liejnner-Window-Of;

Until procedure variables are supported, this procedure just invokes an operation
to create the inner component's Motif' widget. This will usually be through a call of'
XL('reate-ManagedLWidget, unless Motif provides a convenience routine for thle
desired widget class.

'A.4 Private Body

with Sample;
with Resourced-Object;
with U nchecked(onversi on;
package body Sarnplei-Private is

procedure Createl'he-Widgeu-For
(Object: in out Sample.Sample-l'ype) is

T-1hese declarations allow access to the Sample data
-- fields of' Object.

sub~type Sample-ype is Sample.Sample-Type;
type Sam p1 e.RecorcL.Accessi'Fype is access Sam ple-Recordl'ype;
function ''hej amp1 e-lecor&LAccess-V'ersio..Xlf is new

U ncheckedCL.oiwersi oil
(Source => Samplel'ype,
T a rget => S am ple..Record...AccessfType);

'I'le..S ample-.Record..Access:
Sam ple&RecordLAccess-Type

:'' he-S amip1 c-lecord-Access-Version-j)1 (Object);

-- Objects needed to create the top-level (application) shell
Sone(1ass: constant String := "Sample-class";

-- TIhesc declarations provide direct access to ResourcedLObject fields.
.subtype ResourcccLObjectL'ype is R~esourced-Object. Resour-cecL-Objecc-:lype;
type Resource&Ob01jecl~ecordj\ ccess,-iiype is access

R~esourcecL-0l)jecL-Irivate. ResourcccL-ObjecL-lecorcl'ype;
function 'I'li.jIesourcecL-lecorcL-Access-Vrsio...Of' is new

U ncheckedC(oiiversioii
.(Source => SamnpleiType.

T arget => R~esou rcec(O)bjecLiecorcL-Access-I ype);

BR24 Final Report
1)613-11000 41

CDRL 01000 The BOEING Company CDRL 0 1000
TASK BR24

'1 he...Resourced...VersioiL..OL-Object: ResourcedLObjectil ypc
Resourced-ObjecLType (Object);

-- Holds value of (checked) type conversion from File-Selectionil'ype.
TIhe-Sample..Resources:

J~esourced-Object. Resources-I'ype;
-- Holds the Xt resources (widget) data for Object.

-- T[he object that contains Object.
'lHi-arent: Resourced-ObjectU'ype

= Resourced-Ojec-lIype(lhIe-i~aren L-Of (Object));
-- ThejParent-Of inherited from ResourcecLObject.

begin -- (Createl'he..Wicgetl or)
-- Create the Sample's widget.
T1he-SampleiResources :

X-I'ool kiLl ntri nsics.-OSL-'XL-(reate-.M aiagecL-Wiige~t
(Name => 1I).The-String-Version-Of

(Object. Its-1 1)),
Class => Sample.The...Widlge-(I ass()' (Object),
P arent => lZesourced-Object.l'i-l~esourcesj 1* (1 he-Parent)

Set-liejResources-Of
(Object, T1o => 1'he..S amp I eiResources);

-- Operation inherited from Resourced-Object
end Createil'he..Widget-For;

end Sarnple..Yrivate;

13IZ24 Final Report
1)613-11000 42

TASK BR24

The Boeing Company

ACTIVE SHEET. RECORD

ADDED SHEETS ADDED SHEETS

R SHEET NO. R SHEET R R SHEET R SHEET R
SHEET E E NO. E SHEET E NO. E NO. E

NO. V V V NO. V V V
L L L L L L
T T T T T T
R R R R R R

1 28
2 29
3 30
4 31
5 32
6 33
7 34
8 35
9 36

10 37
11 38
12 39
13 40
14 41
15 42
16 43
17 44
18
19
20
21
22
23
24
25
26
27

)6 13-! 1000 4.3

TASK BR24

THE BOEING COMPANY

REVISIONS

LTR DESCRIPTION DATE4 APPROVAL

1)613-1 1000(44

